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Executive Summary 

In direct response to 4Request for Proposals: FLIGHT AT VERY LOW REYNOLDS 

NUMBERS - A STATION KEEPING MISSION,” PQlt, the members of Design Squad E 

present Project Dawdler: a remotely-piloted airplane supported by an independently controlled 

take-off cart. The folk- gives a brief introduction to Project Dawdler’s overall mission and 

design, and is followed byla three-view drawing of the Dawdler and a specifications summary. 

The Dawdler is a remotely-piloted airplane designed to fly in an environmentally- 

controlled closed course (300 ft x 120 ft x 2Mt) at a Reynolds number of 1d (based on mean 

wing chord) and at a cruise velocity of 25 ft/s. It will be able to take-off and climb to a cruise 

altitude of 20 ft wi*in,a tance of 150 fi, ai which point it will have just enough stored power 

to fly a “figure-eight” . w s e  three times andi land withiathe same take-ofmanding strip from 

which it took off (150 
._ I l r  

The two primary goals of this study were to minimize the flight Reynolds number and 

to maximize the loiter time. With this in mind, the general design of the airplane was guided by 

the belief that a relatively light aircraft producing a fairly large amount of lift would be the best 

approach. For this reason the Dawdler utilizes a canard rather than a conventional tail for 

longitudinal control, primarily because the canard contributes a positive lift component. Due to 

the relative size of thc+Whard (it produces WO of lift), the Dawdler, with its low- 

mounted canard and1 high-mounted wing, actua bles a tandem wing aircraft. 

Furthermore, the canardriis fully movable h i d e r  to p&de the necessary pitch control. The 

Dawdler also has a single vertical tail mounted behind the wing for lateral stability, half of 

which is used as a rudder for yaw control. Because m o n s  were excluded from the design 

due to the added wei 13” dihedral angle was incorporated 

into the design of the wing in order to providi rolling ability necessary to turn the 

plane. 

sociated with th 
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Due to the fact that the power required to,’take-off and climb to altitude is much greater 

than that required for cruise flight and simple turning maneuvers, it was decided that a take-off 

cart be used. This allowed for the use of a smaller sized electric motor (Astro 035) and a 

corresponding reduction& .,i I the amount of battery I ”  storagq ~eeded, all of which contributed to a 

lighter design. The qq itself is designed to accelerate the plane to a take-off speed of 

approximately 35 fds, wMch should give the aircraft sufficient kinetic energy to zoom to cruise 

altitude. 

Based on the current design, there are two unknowns which could possibly threaten the 

success of Project Dawdler. First, how will the fully-movable canard with its large 

appropriation of total lift affect the performance of the plane, and secondly, will the take-off 

procedure go as according to plans? These are questions which can only be answered by a 

prototype. We do feelahat Project Dawdler is a solid design, and with continued support and 

development, it will u l h t e l y  prove to be a’success. 

- Design Squad E 
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Three-View Drawing of The Dawdler 

V 



Specifications Summary 

Fuselage: 
length 37 in 
max diameter 3.5 in 
average diameter 3.25 in 
finess ratio 10.57 
payload volume 190 in3 

aspect ratio 7.72 
span 60 in 
root chord 7.8 in 
taper ratio 1 .o 
dihedral 13' 

incidence angle 4.35' 

aspect ratio 5.55 

taper ratio 1 .o 

wing: 

airfoil section Clark-Y 

Canard: 
area 20 1.6 in2 

mot chord 6.0 in 

incidence angle 5.85' 

area 49.5 in2 
aspect ratio 1.64 
root chord 5.5 in 
taper ratio 1 .o 
airfoil section flat plate 

motor Astro 035 
placement front 

number of blades 

total 37.1 oz 
engine 6.9 oz 
avionics 4.3 oz 

Vmin 21 ft/s 
VmaX 40 ft/s 
vstall 21 ft/s 

1760 yd 
endurance 193 s 

airfoil section Clak-Y 
Vertical Tail: 

>repulsion: 

9-6 
2 

Propeller 

Weights: 

)erformance: 

vi 



I 
Mission Study 

The following is an exact transcript of the original Request for Proposals: 

UNIVERSITY OF NOTRE DAME 
DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING 

AE441: Aerospace Design: Request for Proposals Spring 1990 

FLIGHTATVERYLOWREYNOLDS 
NUMBERS - A STATION KEEPING MISSION - 

Most conventional flight vehicles are designed to operate in a flight regime such that the 
Reynolds number based on mean wing chord is in ixcess of 106 and some currently are 
approaching 108. Recently there has been interest expressed in vehicles which would operate 
at much lower Reynolds numbers, less than 105. Particular applications are low speed flight at 
very high altitudes, low altitude flight of very small aircraft and flight in other planets’ 
atmospheres such as Mars. There are many unique problems associated with low speed flight 
which pose challenges to the aircraft designer and which must be addressed in order to 
understand how to ex loit this low Reynolds number flight regime. Since many of the 

developments in unmanned aircraft development with our knowledge of low Reynolds number 
aerodynamics in order to develop an aircraft which can fly as slow as possible at sea level 
conditions, This study will help to better understand the problems associated with flight at 
these very low Reynolds numbers. Considering the potential applications, the aircraft must 
also be very robust in its control and be highly durable. 

anticipated missions ! or this type of aircraft are unmanned, it is necessary to couple 

OBJECTIVES 
1. Develop a proposal for an aircraft and associated flight control system which must - -  

be ableto: 
a. Maintain level controlled flight and fly a closed course at flight speeds 

corresponding to Reynolds numbers less than 2 x 105 and as close to 1 x lo5 as 
possible. The greatest measure of merit is associated with achieving the lowest 
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b. 

C. 

d. 

e. 

mean chord Reynolds number possible and maximizing the loiter time on a 
closed course. 
Be maneuverable and controllable so that it can fly a closed pattern and remain 
within a limited airspace. 
Use a propulsion system which is non-airbreathing and does not emit any mass, 
(i.e. rocket, etc.). 
Be able to be remotely controlled by a pilot with minimal flying experience or an 
autonomous onboard control system. 
Carry an instrument package payload which weighs 2.0 oz and is 2” x 2” x 2” 
in size. 

2. Take full advantage of the latest technologies associated with lightweight, low cost 
radio controlled aircraft and unconventional propulsion systems. 

3. All possible considerations must be taken to avoid damage to surroundings or 
personal injury in case of system malfunction. 

4. Develop a flying prototype for the system defined above. The prototype must be 
capable of demonstrating the flight worthiness of the basic vehicle and flight control 
system. The prototype will be required to fly a closed figure “8” course within a 
highly constrained envelope. A basic test program for the prototype must be 
developed and demonstrated with flight tests. 

5 .  Evaluate the feasibility of the extension of the aircraft developed under this project 
to high altitude station keeping application for atmospheric sampling. 

a. 

b. 
C. 

d. 

e. 

f. 

S AND CONSTRAINTS 
The system design shall satisfy the following. 

All basic operation will be line-of-sight with a fixed ground based pilot, although 
automatic control or other systems can be considered. 
The aircraft must be able to take-off from the ground and land on the ground. 
The aircraft must be able to maximize the loit6 time within a restricted-altitude range 
on a figure “8” course with a spacing of 150 ft between the two pylons which 
define the course. 
Ground handling and system operation must be able to be accomplished by two 
people. 
The complete aircraft must be able to be disassembled for transportation and storage 
and fit within a storage container no larger than 2’ x 2’ x 4’. 
Safety considerations for systems operations are critical. A complete safety 
assessment for the system is required. 

a. 
b. 

C. 

d. 

e. 

f. 

g. 

SPECIAL C o N S I D W O N S  FOR T H E O L O G Y  PEMONSTRATQB 
The Technology Demonstrator will be a full sized prototype of the actual design. 
The flight tests for the Technology Demonstrator will be conducted in the Loftus 
Center on a closed course similar to that described above. The Demonstrator will 
be required to complete 3 laps on the course. The altitude must not exceed 25’ at 
any point on the course. 
Take-off must be accomplished within the 150’ take-off region shown on the 
following figure. 
Loiter time will be based on the time needed to complete the 3 complete laps in the 
air. 
The design team must make provisions for estimating altitude and flight speed 
during the tests. This information is to be monitored form ground based observers. 
The propulsion system for the technology demonstrator must not contain any 
chemicals or any other substance which could prove harmful to the Loftus Center or 
the aircraft operators. 
The radio control system and the instrumentation package must be removable and a 
complete system installation should be able to be accomplished in 30 min. 
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h. System control for the flight demonstrator wil l  be a Futaba 6FG radio system with 
up to 4 S28 SCNOS or a system of comparable weight and size. 

i. All FAA and FCC regulations for operation of remotely piloted vehicles must be 
complied with. 

150 ft 
b 

G 
0 
2 

, 

4 300 ft 
b 

- Pylon 
v////////////51 - take-off/pit 

area 
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This document defines the general mission. Namely, a remotely-piloted airplane is to take-off 

within a 150 ft x 30 ft area, fly at an altitude no greater than 25 ft, complete a series of three 

“figure-eight’s,” and land safely within the same area from which it took off. This obviously 

requires that the plane be capable of turning in both directions and have both longitudinal and 

lateral stability and control. Furthermore, because the plane will be flying inside the confines 

of a building, the propulsion unit must not be of a chemical nature. Safety considerations are a 

primary concern. Further constraints on the final design are dictated by the need disassemble 

the plane for storage and transportation. But aside from the actual flight course requirements 

and physical limitations, the primary mission goals are to fly at as low a Reynolds number as 

possible, and to maximize the loiter time (by flying as slow as possible). It is the attainment of 

these two goals which guided the overall design process. 

In an effort to further quantify the mission, several additional constraints and 

refinements were made. First, based on the fact that the mean-wing-chord Reynolds number is 

defined as Rec=pUc/p, a list of several mean chord lengtwflight speed combinations which 

correspond to a target Reynolds number of 1 x 105 was produced. From this list it was finally 

decided that a cruise velocity of 25 ft/s could be attained and would adequately satisfy the 

primary mission goal of maximizing the loiter time. Dictated by this choice of Reynolds 

number and flight speed, a mean aerodynamic chord of 7.8 in was selected. 

Secondly, some particular performance characteristics of the airplane were defined. A 

cruise altitude of 20 ft was chosen because it would allow for some leeway with the maximum 

ceiling of 25 ft. It was also determined that a minimum turning radius of 45 ft would be a good 

limit in regard to the “figure-eight” course. Furthermore, due to the relatively large size of the 

turns, it was desired to have enough excess power to sustain steady, level flight through the 

turn, or at the very least to keep the loss in altitude under 5 ft. Concerning the take-off 

procedure, it was decided that the plane should attain take-off speed and lift-off from the 

ground within a distance of 75 ft, and continue its ascent to cruise altitude in a total distance no 

greater than 150 ft. 
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Finally, because of the ban put on the use of chemical propulsion systems, it was 

decided that an electric motor/propeller combination would best fulfill the mission 

requirements. Two other possibilities were considered, however. Namely, mechanical storage 

(i.e. rubber band power) and some type of a -powered  propulsion system. These were both 

rejected on the grounds that they would prove to be too unreliable and most likely not be able to 

operate continuously over the necessary time interval. 
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I1 
Concept Selection Studies 

Before anything else happens in the long process of building an airplane, a concept of what it 

will look like has to be considered. In deciding what the plane will be, many items have to be 

weighed against one another; what the plane will look like, the cost, the ease of construction, 

and the ease of flying are just four of the many characteristics of the airplane that must be 

balanced against one another before any real designing can be done. Design group E basically 

had only two designs to chose from: a conventional aimaft, and a canard aircraft. 

The conventional aircraft envisioned was a powered sailplane with a long wingspan, 

long body, and small fuselage. One team member’s concept of this design can be seen in Fig. 

2.1. This airplane would not be too difficult to design, because most of the information 

available on designing aircraft is specifically for conventional aircraft. The conventional 

aircraft design had two drawbacks. First, the wing would have to generate more lift than the 

aircraft weighed, due to the fact that the horizontal tail would have to generate negative lift to 

keep the airplane stable and controllable. Second, almost every other group was using a 

conventional design; this plane would be just another conventional design flying around in a 

figure-eight. 

The canard airplane was just a basic canard design: low mounted canard, high mounted 

wing, and a pusher-prop. This plane had several advantages. First, it would be different; no 

other airplane was using a canard. Second, it would be interesting to design and build; 

besides, most aircraft designed commercially are conventional, not canard users. Finally, the 
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FIGURE 2.1 Three-View Dpwing of Conventional Design 

I I I I  

I ’  1 

b 
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initial concept looked very futuristic, and to several group members, aesthetics were very 

important. The primary drawback of the canard airplane is that it is different; many of the 

equations used to design an aircraft, and almost all of the stability and control equations, would 

have to be adapted to a canard design. 

After much discussion, the canard proponents won the discussion. Everyone agreed 

that it would be interesting to design an aircraft that would be different from everybody else’s. 

Another benefit was that it would use two surfaces for lift instead of just one as the 

conventional ones do. Also, the plane would just turn with the rudder instead of with ailerons; 

this would make it easier to fly, and cut down on the weight because of fewer moving parts. 

In addition, the pusher-prop was changed to a tractor because the pusher-prop was found to be 

very inefficient. Finally, the fuselage was enlarged because the initial one would not have been 

able to suffice after the other changes that were made to the airplane. 
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I11 
Aerodynamic Design 

3.1 Wing Selection 

The procedure to size the wing followed primarily from the design parameters that guided the 

entire project. Of these, the greatest effect on the wing is felt from the Reynolds Number 

requirement of lo5. Since the Reynolds Number is a function of the chord, velocity, and 

dynamic viscosity, and the dynamic viscosity is constant, either the chord or the velocity must 

be known in order to calculate the other. A velocity of 25 ft/s was set. From the definition of 

Reynolds Number, the chord is 0.648 ft. Next, the available data base of aircraft from past 

research at the University of Notre Dame was searched in order to find an approximation for 

C L ~ ~ ;  this resulted in an average C L ~ ~  of 1.0. (This value was later confirmed for the final 

wing using lifting line theory by increasing angle of attack until wing stall occurred; a value of 

1.02 resulted from these calculations.) The CL was arbitrarily set at 0.7 as a compromise 

between one with a safe margin before stall occurs, and one that would be so big as to be 

impractical. Since CL depends on air density, velocity, lift, and surface area, once the required 

lift was known, the surface area of the wing could also be calculated. 

The lift for this airplane would differ from conventional airplanes because it utilizes a 

canard as opposed to the normal horizontal tail. This means that the wing only has to carry a 

fraction of the lift, instead of all of it as the conventional designs must. A distribution of lift of 

70% - 30% between the wing and canard was decided on. This reflects a compromise between 

a tandem wing design and a normal canard which uses at most a 80% - 20% split. On one 
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hand, the wing has to carry less lift, therefore it can be smaller. On the other hand, the canard 

could become so big that any loss of lift on the canard could send the plane nosing into the 

ground. It was felt that with a 70% - 30% split of lift the second problem could be reduced by 

limiting the range of canard motion to just a few degrees in either direction. 

At this point, a l l  that is needed is the weight of the airplane to finish calculating the 

dimensions of the wing. It was determined that the entire airplane would weigh 2.3 Ib, of 

which 0.69 Ib would be lifted by the canard, and 1.61 Ib would be lifted by the wing. This 

value would be increased to 1.7 Ib due to the fact that the dihedral would cause the wing to 

lose approximately 5% of its lifting force. From the definition of lift as a function of CL, 

velocity, air density, and surface area, the surface area has to be 3.24 f?; since the chord is 

0.65 ft, the wing span must be 5 ft. The wing is rectangular primarily because of the ease of 

construction. 

3.2 

The airfoil chosen for this plane is the Clark-Y. The Clark-Y has been used for many years in 

low Reynolds number applications; in other words, it has proven reliable in the conditions that 

this airplane will be flying in. The primary reason for deciding on this airfoil is its low drag 

values over the entire range of Cl's that the plane will fly through. This is important because in 

order to reduce weight, it was decided to use a smaller engine with fewer batteries; hence, the 

drag has to be minimized or else the engine would not pull the plane through the air. As stated 

above, the wing needs a CL of 0.7. Even after the effects of a finite wing are accounted for, 

the wing made from the Clark-Y still has a comfortable range of 6' of attack angle before stall 

occurs (cruise ad', stall a= 1W). Although the margin of error would be greater using an 

airfoil with a higher C h u  (for example, the Wortmann FX63-137B. which has the best 4D 

of any other airfoil inspected), the Clark-Y has the lowest drag of any airfoil.(Refer to Fig. 

3.2.2 for the drag polar for the Wortmann FX63-137B) Also, with its thick trailing edge it 

would be easier to construct than the Wortmann. 

Airfoil Selection for the Wing 
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FIGURE 3.2.1 Drag Polar for Clark-Y 
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FIGURE 3.2.2 Drag Polar for Wortmann FX63-137B 
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3.3 Canard Sizing 

Unlike the wing, the canard is not governed by the design requirements; in other words, it can 

be made any size, so long as the chord does not exceed 0.65 ft. The only other constraint is 
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that it must lift 0.69 Ib. The airfoil section chosen for the canard is the Clark-Y for two 

reasons. Firstly, it is already being used with the wing, and secondly, C1 and c d  data was 

available for Reynolds numbers down to 6x104. Next, the chord was set at 0.5 ft because it 

resulted in a Reynolds number of 7.7x104, which has information available; also 0.5 is an easy 

number to calculate with. The span was set at 2.8 ft because with these values the Aspect Ratio 

is greater than 5. This is important, because the equations in dealing with finite wings (lift 

curve slope, drag, etc.) a~ only applicable for Aspect Ratios greater than 5. The canard is 

rectangular, like the wing, and has no dihedral. The canard has a CL of 0.7 at cruise, and stalls 

at an angle of attack of 9'. This is important because it insures that the canard will stall before 

the wing, which is one of the desirable characteristics of a canard aircraft. 

3.4 Aircraft Aerodynamics 

The CL for the entire aircraft was found by first calculating the required CL at cruise (1.0). 

Next, the information on the airplane was entered into the computer program LinAir. LinAir 

does not calculate exact values, but does find trends such as the lift curve slope and efficiency 

with much precision. From this program, it was determined that the lift curve slope (C,) is 

0.097 per degree, and the Oswald Efficiency Factor is 0.86. Figure 3.4.1 shows the lift curve 

which was computed by the LinAir program. The zero lift angle of attack for the airplane is 

-4.95', and the stall angle for the airplane is 7.4'. 

The parasitic drag coefficient is 0.035; this is found from adding together the parasitic 

drags from the wing, canard, fuselage, and tail, then basing the drag coefficient on the wing. 

The induced drag is derived from the lift. The drag vs. angle of attack curve for the aircraft is 

shown in Fig. 3.4.2 and the drag polar for the whole aircraft is shown in Fig. 3.4.3. 
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FIGURE 3.4.1 The Dawdler's Lift Curve 
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FIGURE 3.4.2 Drag Coefficient vs. Angle of Attack of the Whole Aircraft 
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FIGURE 3.4.3 Drag Polar for the Entire Aircraft 
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IV 
Propulsion System 

4.1 System Selection 

The mission specifications requires that the propulsion system for the RPV design be non- 

airbreathing and not emit any mass. This type of system would be able to operate in 

environments with little or no oxygen such as very high earth altitudes or even another planet’s 

atmosphere without causing any contamination or pollution. These requirements rule out 

several conventional propulsion systems such as rockets and reciprocating propeller engines. 

Two types of systems that did meet the requirements and were considered were a rubber band 

powered propeller system and an electric motorbattery powered propeller system. 

The rubber band power system would use the stored mechanical energy of a twisted 

rubber band or rubber tubing to drive a propeller. This type of system could be very 

lightweight and inexpensive, but problems were predicted in being able to provide any engine 

speed control. It might be possible to develop a mechanism that could apply a friction force to 

the propeller gear to control the speed of rotation, however, no information could be found on 

such a system, and it was abandoned. 

The electric motorbattery power type systems were found to be readily available 

commercially and capable of providing the power necessary for the mission. Information was 

available from several model airplane advertisements and brochures in the form of maximum 

power ratings for most electric motors, while two motors even had tables of current drawn, 

gear power, and torque for various motor speeds. These motors were the Astro 05 and Astro 
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15.[1] Many types of engine control systems are also available for the electric motor systems 

and are ideally suited to the mission objectives. Because of the availability of electric motor 

systems and engine control systems along with a useful data base, this type of system was 

chosen for the design. 

4.2 System Integration 

The Dawdler uses a single motor that is mounted in the front of the fuselage with a tractor type 

propeller. A single engine is used primarily because it can provide the power necessary for 

steady level cruise and enough excess power for a moderate rate of climb. The use of two 

engines would greatly add to the propulsion system weight and would require more battery 

capacity than a single engine. The only benefit derived from using two motors would be that 

by having them counter-rotate, the net roll moment created by the propeller torque would be 

zero. However, proper geometric wing twist can easily be implemented to counteract the 

nonzero moment created by a single engine system. 

The decision to use a forward mounted tractor type propeller stemmed from the design 

objective to have an aircraft that would make “tail dragger” type landings. This would reduce 

the weight of the landing gear since only two gear would be needed versus three. The forward 

placement of the propeller would allow the thrust line to be located near the longitudinal cg axis 

without requiring large landing gear to maintain ground clearance during landings. 

A second possible benefit of having the propeller in front of the fuselage is a slight 

increase in lift from the h n t  wing. The increased velocity in the slip stream of the propeller 

will pass over the canard which is located fairly close behind the propeller. The increase in 

dynamic pressure should provide an increase in lift at the root portion of the canard. 

Unfortunately, the flow behind the propeller is very turbulent and rotational losses in the flow 

could lessen the benefit of higher local velocity. Ideally, experimental tests should be 

performed to verify the Wctions.  
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4.3 Motor Sizing 

Because the mission objective includes the use of a powered cart to accelerate the RPV up to a 

speed which will allow it to take-off and perform a decelerated climb up to the design altitude 

of 20 feet, the on-board propulsion system is only required to provide enough power to 

30 

20 - 
8 
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L c  10- 

0 

maintain steady level fight at the desired cruise speed of 25 ft/s and enough excess power to 

allow a small climb capability to compensate for any losses in altitude. This was a major factor 

in the initial sizing of the aircraft propulsion system. Since the rake-off is the most demanding 

part of the mission, it was possible to reduce the size of the motor and therefore the weight of 

the entire design. 

I I I 1 -  I 

FIGURE 4.3.1 Power Required Estimate for the Dawdler 

W=2.3 lb 
s=3.24 ftA2 
AR=7.7 
CD0=4.04 
d . 7  

The following parameter values were used for all of the propulsion calculations: 

W = 2.3 lb CD, = 0.04 

S = 3.24 ft! 

AR =7.7 

e = 0.7 

The drag polar was estimated from the relation 
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CD = CD, + CL2/(xARe) 

and the values for CQ, and span efficiency factor, e, were suggested by several sources. From 

the preliminary estimates of the total design weight, lifting surface areas, and drag polar, it was 

possible to calculate the power required for level flight over a range of velocities (see Fig. 

4.3.1). A conservative estimate of 10 watts was made for the minimum Pres for level flight at 

25 ft/s. This was used as a criterion for the cut-off value of Pa" max that the system would 

absolutely have to supply to be considered. Making another conservative estimate of 40% for 

the propeller efficiency, the maximum power ratings for several motors were used to select the 

proper motor size as shown in Table 4.3.1. 

TABLE 4.3.1 Motor Specifications and Predicted Power Available 

NiCad system max Pav predicted max 
Astro Motor Battery weight from shaft Pa" from prop 

Cobalt 020 4x800 mah 9 oz 50 watts 20 watts 

Cobalt 035 5x800 mah 11 oz 90 watts 36 watts 

Cobalt 05 7x900 mah 16 oz 125 watts 50 watts 

Cobalt 15 12x900 mah 25 oz 200 watts 80 watts 

Although the Astro 020 motor was predicted to be able to provide enough power, the extra 

power of the 035 motor was considered more beneficial than the penalty of an extra two ounces 

in system weight. The Astro 035 motor should be able to supply an adequate amount of power 

for the design objective at a relatively low weight and was selected for the Dawdler design. 

Recall that the Dawdler mission will utilize a powered cart during take-off, allowing for such a 

small motor. Ordinarily the power required during take-off is at least twice that required for 

cruise. 
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4.4 Propeller Design 

The Master Airscrew 9-6 propeller was chosen for the Dawdler propulsion system. The choice 

of this propeller was based on results obtained from blade-element theory and comparisons 

made with experimental data from wind tunnel tests.[2] This combination of 9” diameter and 

6” pitch proved to provide the best efficiency at the cruise velocity and good off-design 

characteristics. 

A computer program developed by B.N. Young was used to make the blade-element 

theory predictions of the thrust coefficient, power coefficient, and propeller efficiency. [3] 

These results were only approximate since simple blade-element theory assumes inviscid flow. 

However, with corrections for induced velocity and tip losses accurate results have been 

obtained for some propellers.[3] The low Reynolds numbers experienced in this particular 

mission might cause these estimates to be even less accurate. Young’s program does contain a 

correction for Re, but it is stil l  believed that the coefficients are overestimated. 

Experimental results tended to vary from the theoretical results with respect to the 

efficiency curves (see Fig. 4.4.1), but direct correlations are difficult to make because the 

propellers were of different sizes and makes. It is believed, though, that the theoretical results 

overestimated the values of eta and predicted the location of the peaks at too large of values for 

the advance ratio J. Accounting for this fact and because the most efficient engine speed is 

known to some degree, the relation J=V/(nD) suggests that the propeller should have its 

maximum efficiency in the range of 0.25 < J < 0.45 (depending on the diameter) to be best 

suited for this mission. A 6” propeller pitch is predicted to be the best choice from the data of 

Fig. 4.4.1. 

The selection of the propeller diameter was made from an analysis of the useful power 

available from the propeller and the power required to turn the propeller, or Pgear. Using the 

results for Cp and Ct from Young’s program, another computer program DESPWR was 

developed to calculate PW and Pgear from the equations: 

P, = thrust xvelocity = (Csn2D4)V 
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PgeU = torquexw = Gpn3D5 

Both quantities have a strong dependence on D, the propeller diameter. Results are given in 

Table 4.4.1. It can be seen that a diameter of 9” supplies the necessary Pav to cruise at 25 ft/s 

at the least value of Pgm This means that the motor will be drawing less current from the 

battery for a 9” propeller than it would if it had to turn a smaller propeller at a faster rate or a 

larger propeller at a slower rate. Therefore, the best choice of diameter appears to be 

approximately 9 inches. 

FIGURE 4.4.1 Variation of Efficiency Curves with Pitch 
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TABLE 4.4.1 Motor Performance for Several Prop Diameters 
(pitch = 6 in, V = 25 ft/s , Pav = 7.6 watts) 

current 
drain rpm 

Propeller power required applied 
Diameter to turn gear voltage 

6in 14.6 W 8.1 v *  6.1 Amp go00 
8in  12.9 W 5.3 v 8.1 Amp 5400 
9in 12.6 W 4.6 V 9.3Amp 4450 
10 in 12.6 W 4.1 V 10.6 Amp 3750 
12 in 13.8 W 3.8 V 14.4 Amp 2900 

* above recommended voltage 
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A two blade propeller was selected for the design for several reasons. First, it appears 

that two blade propellers are most popular for small, low-speed aircraft.[4] The biggest benefit 

from using a three or four blade propeller is a reduction in the noise output level. This is not a 

primary concern for the design of this mission. Secondly, the two blade propellers are 

available in many more styles and sizes than are the three and four blade propellers. Finally, a 

two blade propeller would weigh less. 

4.5 Propulsion System Performance Predictions 

The total system performance of the Astro 035 motor coupled with a Master Airscrew 9-6 

propeller was predicted using the results obtained from the propeller analysis and estimations 

of the motor’s characteristic constants. These constants include the motor torque coefficient 

Kt, speed coefficient IC,, and armature resistance Ra. These constants were scaled from 

comparisons with the 05 and 15 size motors, and were estimated at &=OS4 in-oz/A, 

Kv=0.000351 V/rev, and Raa.05 0. It was also assumed that there would be a constant 

torque loss due to friction of 1.0 in-oz and a gear efficiency of 0.95. These values were used 

in another computer program DESPR2 to calculate the current, voltage, Pav, and Pgear for 

various flight velocities and motor speed settings. The figures of merit of concern for the 

system were the maximum power available and the current draw at cruise. Also of interest 

were the maximum propeller rpm and voltage settings for different flight conditions. 

It was necessary to include a gear box with the motor once the decision to use a 9 inch 

propeller was made. This allows the propeller to turn at a slower rate than the motor armature. 

Only one gear ratio was available for the Astro 035 motor - 2.4 to 1. With the geared 

propeller, the motor can run at a more efficient speed giving the overall system better 

performance. 

The power available curves are shown superimposed on the Dawdler’s predicted Prq 

curve in Fig. 4.5.1. The maximum power available of the system is predicted to be about 20 
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watts. This occurs at a flight speed of 32 ft/s and propeller speed of 6200 rpm. The propeller 

cannot turn any faster than this because of the voltage constraint. The applied voltage is 

recommended to be no more than 6.75 volts. If a higher voltage were applied, the motor still 

would not be able to turn the propeller more than 7000 rpm because the system is constrained 

to a maximum current of 20 A. A 20 amp fuse is included in the system to prevent damage to 

the motor. 

FIGURE 4.5.1 Power Available for Master Airscrew 9-6 
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Figure 4.5.2 shows the voltage settings required for several motor speeds. Figure 

4.5.3 shows the current draw of the motor for the same settings. From these two figures and 

Fig. 4.5.1, it can be seen that the applied voltage must be about 4.7 volts at cruise which 

corresponds to a propeller speed of 4450 rpm and current drain of 9.3 A. With this in mind, it 

is estimated that the system will consume about 275 mah of battery capacity during the 

mission. 500 mah NiCad cells were selected to provide the necessary endurance required by 

the mission for the least amount of battery weight. 
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FIGURE 4.5.2 Battery Voltages at Several Speed Settings 
(Astro 035 Motor With Master Airscrew 9-6 Propeller) 
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FIGURE 4.5.3 Current Draw by Master Airscrew 9-6 Propeller at Set RPM 
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Figure 4.5.1 also indicates that the maximum velocity the Dawdler can achieve is about 

40 ft/s. The maximum excess power ( Pav-Prq) the system can supply is approximately 10 

watts at a velocity of 29 ft/s. From this, the maximum rate of climb given by the expression 
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R/C=(Pav-Preq)/W, where W is the total weight of the Dawdler (2.3 Ib), is predicted to be 3.2 

ft/s. Table 4.5.1 summarizes the important performance predictions. 

TABLE 4.5.1 Summary of Performance Predictions 

Astro Cobalt 035 motor (2.4: 1 gear reduction) 
Master Airscrew 9-6 propeller 
5 x 500 mah NiCad cells (6.75 Volts) 

Total system weight = 11.3 oz 

Svstem 

Max Pav = 20 W @ 6200 rpm 

Max velocity = 40 ft/s 

Max Rate of Climb = 3.2 ft/s 

Max propeller speed = 6200 rpm 

voltage at cruise = 4.7 Volts 

c m n t  at cruise = 9.3 Amps 

rpm at cruise = 4450 

4.6 Engine Control 

In order to properly control the speed of the airplane, the system must include some sort of 

engine control. Since the engine speed is controlled by the applied voltage, it would be 

possible to fix the voltage at one setting and let it go, but the airplane would sink if the voltage 

was set too low (if it ever even got off the ground), or would fly too fast if the voltage was set 

too high. There would be no way to adjust the throttle for different flight conditions - a 

serious obstacle to the successful completion of the mission. To fix this, the design will 

include an electronic speed controller. 

Because the flight conditions will change throughout the mission, i.e. initial climb, 

level cruise, and turning maneuvers, the load torque applied to the propeller will change also. 

The motor speed is a function of both the voltage applied to the motor and the load torque 

experienced by the propeller. A block diagram for the control of the electric motor speed is 

shown in Fig.4.6.1. Since the load torque will be different for separate parts of the mission, 

the applied voltage must also be changed in order to maintain the desired response, the engine 
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speed. Note that all of the other constants are fixed characteristics of the motor itself. The 

electronic speed control will allow the applied voltage to be changed appropriately during the 

flight. 

motor 
battery- 

FIGURE 4.6.1 Block Diagram of Engine Control System 

electronic 
speed 

controller . 

Kv 4 I 

motor 
L 

Ra = resistance of motor aRI18tuTe 
I? = motor toque coefficient 
J = moment of inertia of armature 

D = ddt 
Kv = motor speed coefficient 

8earbox 

The speed controller is essentially an electric on-off switch connected in series between 

the propulsion battery pack and the motor. The controller is itself controlled through one of the 

receiver’s radio channels. The pilot can select the speed with the position of a joystick. By 

switching the current to the motor on and off many times a second, the speed controller 

regulates the effective voltage seen by the motor and therefore the speed at which the motor 

runs. A schematic diagram of the propulsion system is shown in Fig. 4.6.2. 

- &vex 
battery 

Itxeiver 
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The disadvantages of this type of engine control are its high cost and its additional 

weight to the total propulsion system. The electronic controller costs nearly 50% more than the 

motor itself and weighs almost 50% as much. However, as mentioned before, without this 

control the mission objectives would be very difficult to accomplish. 
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V 
Weight Estimation 

5.1 Weight Percentages 

The weight of the Dawdler was calculated by analysis of all of the components of the aircraft 

propulsion system, control system, and structures. The weights of all components were 

estimated by using data bases from past projects as well as information from the engine 

company and radio control system information. Structure weights were estimated using 

weights of similar projects currently on display in the Aero Lab. From these estimates, our 

preliminary weight of 36.8 oz was determined. Once the actual equipment was acquired, the 

system components werc weighed and a more accurate estimation was made. This included 

estimating the actual weight of the structure by analysis of the framework and required 

structural reinforcements. All these calculations were based on the average densities of the 

structural material property (see Table 5.1.1). The information was acquired by 

experimentation with various woods and was provided to us so the reference is unknown. 

However, the density information was checked with samples of materials and was determined 

to be accurate. Volumes for each piece of structure and its corresponding density were used to 

determine the structure weight. The measured and estimated component weights are listed in 

Table 5.1.2. The total system weight has been determined to be 37.2 oz. This is quite close to 

the estimated weight of 36.8 oz. The slight discrepancy will hopefully be eliminated during the 

construction as some overestimates were made in the structure sizing. 
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TABLE 5.1.1 Material Properties 

Balsa 
Spruce 
Birch Plywood 
Aluminum 

65E03 0.0058 400 
1.3E06 0.016 6200 

2.01E06 0.023 1 2500 
1EO7 0.100 20E03 

TABLE 5.1.2 Component Weights 

Component 
Engine, Engine Mount 
Engine Battery 
Receiver, Servos, System Battery 
Speed Controller 

Canard 
Fuselage 
Landing Gear, Misc. 
Total System Weight 

wing 

Weight (oz) 

7.764 
3.800 
4.348 
1.605 
8.376 
3.700 
4.607 
3.000 
37.20 

Wt. Fraction (%) 

20.9 
10.2 
11.7 
4.3 
22.5 
9.9 
12.4 
8.1 

5.2 Center of Gravity Estimation 

Once the component weights has been determined, the center of gravity must be estimated. 

This consists of the use of a simple mathematical equation evaluated with all of the vehicle 

components in mind. To find the most accurate center of gravity, the vehicle needs to be 

broken up into small components. These components consisted of the structural components, 

the radio equipment, propulsion system and speed controller. Locations for these components 

were selected due to the need for the center of gravity to reside in a specific location. This 

position is located at 15.25 inches from the nose of the aircraft. Refer to Fig. 5.2.1 for a 

description of the coordinate system. This position was selected for pitch stability. The 

equipment was placed into the aircraft as shown in Table 5.2.1. Note that for each component, 
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the position is that of the component’s center of gravity. For the wings, this position was 

estimated to be the quarter chord point. 

FIGURE 5.2.1 Coordinate System 

TABLE 5.2.1 Component Placement and cg Location 

I Center of Gravitv Locations I 
I Weight I C.G. Location I Component 
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It should be noted that the above estimates as to the locations of the equipment and 

structure is only an estimate until the exact structure weight is known. The above numbers will 

be valid if the structure can be built at the weight that is specified. Because of the distance 

between the engine and the engine battery, it will be required that a significant amount of wire 

be placed in the RFV. As this is a distributed load, it will not have a major effect on the 

location of the center of gravity, but will have a significant effect on the weight of the aircraft. 

The wiring weight and miscellaneous equipment weights (such as control horns, pushrods, 

etc.) are not included in the calculation of the center of gravity as they will not affect the 

location in a drastic fashion. 

The location of the center of gravity is very sensitive to the location of the system and 

engine batteries. Because a significant portion of the vehicle weight is located in the engine, 

which is mounted on the front of the aircraft, the batteries must be located at the very rear of the 

vehicle. Because of this, the ability for the cg to travel rearward is severely limited. A need to 

locate the cg farther aft would require the use of ballast, causing an increase in vehicle weight. 

With the layout at present, the center of gravity is not able to move much further rearward 

without ballast. This will not be a problem as long as we can locate the items where we want 

to. If needed the center of gravity may be moved as far forward as required, since most of the 

payload area is not being used towards the front of the vehicle. 
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VI 
Stability & Control 

6.1 Lateral and Directional 

Lateral and directional stability and control are maintained by the wing dihedral and the vertical 

tail and rudder. The critical condition for such control is the half circle turn of the figure eight 

maneuver. Our goal is to perform a steady level turn. 

6.2 Wing Dihedral 

The required wing dihedral was found through an analysis presented by Dr. Blaine Beron- 

Rawdon.[5] This article gives the required yaw angle for a steady state circle maneuver as a 

function of free stream velocity, circle radius and wing span. The yaw angle is a function of 

(l/S,,,,b,W,l/V2,1/r). After correcting for the Dawdler's geometry and flight condition, the 

required yaw angle is 6-7'. The Dawdler will need a wing dihedral of 13'. Wing dihedral will 

reduce the effective lift of the wing proportional to the cosine of the dihedral angle. For a 

dihedral angle of 13' the wing will lose less than,3% of the lift provided by a flat wing. 

6.3 Vertical Tail Sizing 

The vertical tail and rudder were sized according to standard RC modelling rules.[6] The 

vertical tail size is given as: 

s v t  = k s w M A c / 1 v t  

Svt = vertical tail area where 
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S, = wing area 
MAC = mean aerodynamic chord of the wing 
la = distance between the cg of the plane and the ac of the tail 
k = 0.22 for RC models. 

For internal layout and weight balancing, the tail was placed 16 in behind the cg. The tail area 

is 49.4 in2. 

The vertical tail is modelled as a flat plate. To keep the Reynolds number of the tail at 

70,000, the chord of the vertical tail is 5.5 in. The span is 8.98 in. The tail has an aspect ratio 

of 1.63. For RC models it is desirable to have an effective aspect ratio (A&=1555AR)[5] of 

2.5-3.0. The Dawdler has an A&=2.53. 

For adequate control, RC models should have rudders sized at 30-40% of the total tail 

area. The Dawdler’s rudder is sized at 50% of the total tail to ensure adequate control. 

6.4 Stability Derivatives 

For an aircraft to fly in a stable regime, its stability derivatives must have the following 

characteristics: 

G a < O  

%’O 

C1p 0 

The longitudinal stability derivative was solved for by the LinAir program which 

models the wing as a horseshoe vortex lattice in solving the Prandtl-Glauert linear partial 

differential equation. By varying the static margin and designating the trim angle of attack, 

C, and Ga are found. For the Dawdler, it is desirable to have an a h  of 3’. Setting the 

static margin at 15% gives 

& = 0.025 

& = -0.0084 /deg 

The lateral and directional stability derivatives were solved for by considering the 

contributions of each component of the aircraft. Appendix A contains a listing of the 

estimations of the component contributions. For lateral stability, the wing dihedral, vertical tail 
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and wing are all stabilizing elements. The canard alone is destabilizing. For directional 

stability, the fuselage is destabilizing while the wing, canard, and vertical tail are all stabilizing. 

For the Dawdler, the directional and lateral stability derivatives are: 

C, = 4.012 /deg 

CIS = -0.007 /deg 

The Dawdler, therefore, is flying in a stable regime. Figures 6.4.1 , 6.4.2, and 6.4.3 give the 

pitching, rolling, and yawing moment coefficients as a function of angle of attack or sideslip 

angle. 

FIGURE 6.4.1 Pitching Moment Coefficient vs. Angle of Attack 
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FIGURE 6.4.2 Roll Moment Coefficient vs. Sideslip Angle 
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FIGURE 6.4.3 Yaw Moment Coefficient vs. Sideslip Angle 
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6.5 Rudder Deflection 

From the dihedral study, the maximum yaw angle the Dawdler will encounter is 7'. For no net 

yaw moment, G=O. be expressed as 

Cn = GqP + (Cn)&& 
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Solving far rudder deflection (&) such that C p O  gives 

6, = -<GpP)/<G)S, 

The term (C,& can be expressed a@] 

and 

where a, is the angle of attack the vertical tail “sees,” comprised of the yaw angle and 

sidewash angle. The term z is a function of rudder area (S,) versus vertical tail area.[6] For 

the Dawdler, Sr/SVt=O.5 and 2=0.68. This gives &=16.2’. 

6.6 Longitudinal Stability 

Longitudinal stability and control are maintained by a fully deflectable canard. The canard was 

sized for providing 30% of the total lift. For the wing to provide 70% of the lift, it must have 

an angle of attack of 6-7’. The wing is mounted at an angle of 4’, therefore the Dawdler must 

fly at ah=3’. 
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VI1 
Performance Estimation 

7.1 Take-off Performance 

Referring to Fig. 7.1.1, mall  that the mission objective concerning take-off is to reach take-off 

speed and lift off from the ground in a distance of 75 ft, followed by ascent to cruise altitude 

(20 ft) within another 75 ft. Based primarily upon the argument that the power required to 

take-off within these prescribed limits and climb to the proper altitude is much greater than the 

power needed for the remainder of the mission (Le. steady, level flight and simple maneuvers), 

it has been decided that a catapult-type launch should be implemented into the design. By 

doing so the general size of the propeller motor need not be oversized for take-off, thereby 

reducing total plane weight both directly and indirectly - a smaller amount of battery power will 

be needed to power the smaller motor, hence a reduction in battery weight. 

As should be evident from the preceding introduction, the airplane will rely on a 

conversion of kinetic energy (in the form of a high initial take-off speed) into potential energy 

in order to assist the on-board propulsion system in bringing the airplane to its proper cruse 

altitude. This procedure will be referred to as a “zoom take-off.” In order to estimate the take- 

off speed necessary to meet the mission requirements, a simple computer routine was 

developed which essentially performed a numerical integration of Newton’s Second Law. The 

rationale for doing so is fully explained in Appendix B, and the reader should consult this 

section for a complete explanation. Suffice it here to say that the method effectively steps the 
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motion of the plane through differential time elements at which point the external forces exerted 

on the plane are calculated and used to update the velocity and position vectors. 

FIGURE 7.1.1 Three-dimensional View of Closed Course 
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The results of the take-off analysis based on present airplane designs are presented in 

Fig. 7.1.2. Notice that a take-off speed of 42 ft/s would theoretically bring the plane to its 

exact cruise altitude of 20 ft. However, since higher speeds are most likely accompanied by 

more severe load factors and hence greater structural requirements, it has been decided that a 

target take-off speed of 35 ft/s be selected. This will assist the plane by bringing it to 

approximately 314of its cruise altitude. The remaining 5 ft should be easily attained in the 

remaining take-off distance by the power of the propeller alone. In an effort to verify these 

results, a simple kineticy'potential energy balance was performed (see section B.4 of Appendix 

B). Judging from these calculations, it appears that the computer routine is working correctly. 

However, it should be noted that an exact solution isn't expected or even needed. The only 

reason for developing the computer routine was to provide some "ball-park" figures for 

required take-off speed. In this regard the method of analysis has worked quite nicely. 
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FIGURE 7.1.2 Theoretical Altitude Reached Upon Attainment of Cruise Velocity as a 
Function of Take-off Speed 
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In order to accelerate the plane to this take-off speed, a small independently controlled 

take-off cart has been designed (see Fig. 7.1.3) The cart is a four-wheeled vehicle (two axles) 

which is powered by a geared belt drive/electric motor combination. Aside from the motor, 

speed controller and batmy pack, the cart consists simply of a swivel bar upon which the plane 

will rest by means of a small notch running cross-wise through the bottom of its fuselage (see 

Fig. 7.1.4). In order to keep the plane from lifting off the cart before take-off speed is 

reached, the plane will be inclined at a slightly negative angle of attack, and the notch will be 

positioned just behind the airplane’s center of mass. Note that the landing gear is used to 

support the plane at the proper angle. After the cart has accelerated the plane to a speed of 35 

ft/s, the pilot will gently rotate the airplane by deflecting the canard, at which time the plane 

should lift off the cart altogether and begin its climb. [Original designs had the cart physically 

constraining the plane at some prescribed positive lift angle until take-off speed was reached. 

However, upon further discussion, it became apparent that the plane would most likely not be 
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in a trimmed position upon release and would therefore be extremely difficult, if not virtually 

impossible, to control. The present scheme of allowing the plane to rest on the bar and 

gradually rotate to a positive lift angle is a direct result of this dilemma.] Present designs have 

the cart controlled simply by a guide wire running the length of the take-off area, with odoff 

control provided by a “rip cord” connected to a removable fuse at the rear of the cart. 

However, a spare remotecontrol unit could be implemented in order to provide steering and 

throttle control should it be deemed necessary. 

Prior to the actual flight of the airplane, we hope to be able to test the performance of 

the cart and determine if the plane will indeed be able to rotate about the pivot bar upon 

reaching take-off speed (35 ft/s). The airplane itself is essentially a tail dragger with adjustable 

Eront landing gear. It was designed in this manner specifically to allow the plane to be 

realigned on the cart at a new attack angle should the situation arise. We are confident that after 

one or two tests a satisfactory alignment will be found, and if the plane remains stable 

immediately upon lift-off, it will have a good chance of meeting its take-off requirements. 

Once again, the sole purpose for utilizing a take-off cart is to lower the net weight of the 

airplane by reducing the size and weight of the propulsion system. Utilizing a take-off cart is 

essentially the same as “hand launching” the plane. However, because the plane itself will 

have so little excess power, it is necessary to accelerate it to a relatively high velocity so that it 

gains enough kinetic energy to “zoom” to cruise altitude. One would have to be an extremely 

fast runner to produce the same effect with a “hand launch”. Furthermore, the odds of the 

plane being in a trim position upon release seem much lower for the “hand launch” than for the 

take-off cart. 
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FIGURE 7.1.3 Three-View Scaled Drawing of Take-off Cart (scale 1:4) 

TOO View 

0 
S hut-off 
Switch 

Side View n 
e 

Front View 

xxxxx 
x x r x x  

xxxxxxxn 

D SwivelBar 

n 

40 



i. 

41 



7.2 Range and Endurance 

Assuming that the powered cart successfully launches the Dawdler up to the design altitude, the 

on-board propulsion system will not have to draw any extra current for this part of the flight. 

The rest of the mission consists of straight level cruise and banked level turns. It has been 

predicted that the c m n t  drain from the battery will be approximately 9.3 A during the level 

cruise sections. Because the pilot will be pulling back on the stick to maintain level flight 

during the turns, he will also have to increase the motor speed slightly to maintain cruise 

velocity. The current drain will therefore be slightly higher during the turning maneuvers. It is 

estimated that the current drain during the turns will be 9.7 A. 

The propulsion system will use 500 mah batteries, giving the design an estimated 

endurance of 190 seconds. This assumes that the flight consists of equal times of level flight 

and turning flight. This endurance is also the maximum endurance, because the current drain is 

a minimum at the cruise velocity. The range corresponding to the maximum endurance at 

V=25 ft/s is approximately 4750 feet. The maximum range for the aircraft design occurs at a 

slightly higher velocity of V=30 ft/s and is approximately 5290 feet. The endurance at this 

flight speed is about 175 seconds. 

7.3 Power Required and Available 

The power required and several power available curves are given in Fig. 7.3.1. It is seen that 

the minimum power required for the Dawdler design occurs at a velocity of about 20 ft/s. For 

velocities less than this the induced drag begins to dominate, while for velocities higher than 20 

ft/s the skin friction drag increases. 

To maintain level flight at the cruise velocity of 25 ft/s, the propeller speed must be 

approximately 4450 rpm. By increasing the propeller speed, the aircraft can either cruise at a 

higher velocity or climb. The engine is limited to a maximum propeller speed of about 6200 

rpm with the chosen applied voltage of 6.75 volts. At this maximum motor speed, the current 
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in the armature is estimated to be no higher than 16.5 amperes but no lower than 14 amperes. 

Thus, even if a higher voltage were applied, the maximum current the system could withstand 

would soon be reached. 

The maximum power available is about 20 watts at a velocity of 32 ft/s and 6200 rpm. 

The maximum excess power (pav-Pq) available for climbing occurs at a slightly lower velocity 

of 29 ft/s. This means that the Dawdler has its maximum rate of climb capability when flown 

at 29 ft/s. 

The maximum speed the Dawdler can attain is estimated to be around 40 ft/s. This is 

where the maximum power curve intersects the Dawdler’s Pres curve. The minimum velocity 

that the RPV can fly at and remain aloft is 14 ft/s as seen in Fig. 7.3.1. However, because of 

the low Reynolds numbers, it is believed that the wing will stall at 17.5 ft/s. 

FIGURE 7.3.1 Power Available for Master Airscrew 9-6 
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7.4 Climbing and Gliding Performance 

As mentioned above, the maximum excess power occurs at a velocity of 29 ft/s. At this 

velocity, the maximum rate of climb, given by R/C=(P,-P,,)/W , is estimated to be 3.2 ft/s. 
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Note that if the Dawdler’s weight, W, increases the R/C will diminish considerably. The R/C 

at cruise velocity is estirnated to be 2.7 ft/s. The Dawdler should be able to climb over 18 feet 

during one of the mission’s 175 ft straightaways. This is more than adequate since the turns 

will be made at a fairly level altitude and the take-off is assisted by an externally powered cart. 

The gliding performance can be characterized by two figures of merit, the minimum 

glide angle and the minimum rate of descent. The relations for these two parameters are given 

below: 

~min = m W l / ( U D ) m a x )  

(R/D)min = ( ~ W / S ) * ~ ( C ~ C L ~ ~ ) ~ ~ ,  

Given the design’s maximum L/D of 11.5, the minimum glide angle for the Dawdler design is 

50’. From this it is predicted that the maximum distance the Dawdler can glide from the 20 ft 

design altitude is 230 feet. Therefore, the Dawdler should be able to glide through the final 

turn and almost the length of the runway if i t  were to cut the motor. Consequently, if it is 

desired to keep the airplane aloft as long as possible, the minimum rate of descent is 

approximately 2.1 ft/s, and the Dawdler could glide for almost 9.5 seconds. A summary of the 

Dawdler’s perfomance is given in Table 7.4.1. 

TABLE 7.4.1 Summary of Performance Predictions 

W = 2.3 lb Batt. Cap. = 500 mah 
S, = 3.24 f? S, = 1.4 f? 

Max flight speed = 40 ft/s 
Max rate of climb = 3.2 ft/s 
Wing loading , W/Sw= 11.4 odft? (W/Sbt = 8 odft?) 
Max endurance = 193 s 
Range a& max Endurance = 4750 ft 
Max Range = 5290 ft 
Min glide angle, y- = 5” 
Min rate of sink, R/D- = 2.1 ft/s 
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VI11 
Structural Design 

8.1 

For this aircraft, there are not going to be significant ground loads. In our particular type of 

launch, the vehicle will see a significant force during the first few seconds of take-off roll, but 

not much after. The surface on which the take-off occurs is very smooth and should not 

provide any significant bumps to jar the aircraft. Since the largest horizontal force during take- 

off occurs along the length of the fuselage, the largest bending moment applied to the fuselage 

is not significant. See Fig. 8.l.l(a). During the rotation phase of the takeoff, however, the 

fuselage does sustain a large bending moment located near the leading edge of the main wing. 

This is due to the exceptionally large forces that may be created by the lifting surfaces at take- 

off speed. See Fig. 8.1.1@). In order to sustain these loads, the cross sectional area of the * 

main balsa wood beams running the length of the fuselage have been sized at 0.25” x 0.25” 

square. Selection of the take-off pivot point near the center of gravity of the aircraft has 

eliminated the static bending moments at the beginning of the roll. For landing, the aircraft is 

equipped with two, lightweight landing gear wheels located at the front of the aircraft. These 

are here for the sole purpose of preventing the propeller from contacting the ground on landing. 

Due to the weight requirements which we have placed on our aircraft, the landing gear is not 

able to sustain very large impact loads. Our maximum wheel diameter was set at 1.5” and 

preliminary estimates show that the balsa wood struts should be 6” long. It is expected that 

Flight and Ground Load Estimation 
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upon landing, the pilot Will be able to maintain a relatively slow rate of descent to prevent 

breaking of the landing gear. 

FIGURE 8.1.1 Ground and Flight Load Diagram 
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8.2 Structural Components 

The main structures involved in this aircraft are the wing, canard, fuselage, and vertical 

stabilizer. The first of these components is the wing. For our aircraft, weight is the most 

important factor. Therefore, a lightweight wing is a necessity. The effects of various main 

spar configurations were examined to determine the strongest strength spar with minimum 

weight. Rectangular Wing spars, circular spars, and triangular spars were examined. The 

results of analysis concluded that the main spar should be made of spruce caps with non- 

structural balsa support~. This allowed for lightweight construction and minimum deflection 

under the largest load. Preliminary design estimates show that the cross section of the main 

spar caps should be 1/4" wide by 3/16" tall. Balsa leading and trailing edge spars were used to 

sustain any horizontal loads which were expected to be minimal. A special feature of the main 

wing is the removable wingtips. The requirement for our wing to fit into a given volume was 

violated by the 5 ft wing span. This necessitated the use of 1/2 ft, separable wing tips. 

Connection of the wing tips to the main section was accomplished by a rectangular connector 
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which fits between the spar caps. Loads on the wingtips are not significantly high so that a 

spruce connector should adequately suppart the load. 

The canard was constructed in a similar manner with the exception of the use of a 

circular dowel at the mot. This would allow for the entire canard to pivot. Preliminary 

estimates show that a wood dowel with a diameter of 5/16” should be able to sustain the 

vertical loads, however, the ability to sustain the torsional load with minimum twisting is 

unknown at this point. A fully moving canard was selected so that it may provide a wide range 

of loads without complicated control mechanisms. Both the wing and the canard will be 

covered in Monokote to provide shape and torsional stability. See Fig. 8.2.1 for the structural 

layout of the wings and canard. 

FIGURE 8.2.1 Wing and Canard Construction 
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The third structural element is the fuselage. The construction is of a box frame type 

composed entirely of balsa. Thin balsa planking is placed on the outer surface to give 

additional support without increasing the weight dramatically. The omission of this outer skin 

was examined, but it was decided that the extra support given to the main frame was significant 

enough to warrant the weight penalty. 
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The final element is the vertical stabilizer, This is mainly a flat plate constructed of a 

main spar, leading edge spar and trailing edge spar. Several small ribs are spaced vertically to 

give the stabilizer support. The trailing edge must be quite strong since a rudder is connected 

to it. The vertical tail will also be covered in Monokote. While this is a large portion of the 

fuselage weight, it is a necessary one. Due to the need for a rearward center of gravity, the 

relatively heavy tail aids in achieving this. 

The fuselage and vertical stabilizer will be a complete unit. The wing and canard will 

each be an independent piece. Due to the storage requirements, it is necessary that the canard 

and the wing be removeable. The canard will be detached by removing a mounting plate 

located on the underside of the fuselage. See Fig. 8.2.2. The wing will be connected to the 

fuselage by the use of rubber bands. Access to the control systems will be achieved through an 

access hole below the main wing. As most of the equipment is located in the rear, access 

should not be a significant problem. 

FIGURE 8.2.2 Canard Mounting Mechanism 
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8.3 Material Selection 

Because of the nature of our design, the weight was considered the main objective in the design 

of the aircraft. In acccxdance with this objective, we needed to select materials which would be 

strong enough but remain light enough to assemble the RFV in the allotted weight range. 

Many types of materials were available for the construction of the aircraft. These included 

fiberglass, plastics, wood and composites. Of these, woods and composites were the only 

materials that were light enough. Of the types of woods, only spruce and balsa were 

considered. The reason for this was that balsa was a relatively strong material, strong enough 

for the loads Seen during flight, and that spruce was significantly stronger than balsa but was 

also relatively light. Spruce was used only in one place, that being the wing and canard spar 

caps. Balsa was used on all of the rest of the aircraft since no major loads were expected in 

these areas. Composites were examined for a short time. Their significant strength advantage 

and relatively light weight made it a candidate. However, due to the cost of the composite 

material (carbon fiber) and the complexity of construction, this material was discarded. The 

ease of construction and availability of balsa wood and spruce along with the relatively low 

cost made the material selection quite easy. 
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Technology 
IX 
Demonstrator 

A full scale technology demonstrator was constructed to test the feasibility and air-worthiness 

of the Dawdler design. The following sections will highlight the resulting configuration, 

construction, and cost details as well as the flight test results. 

9.1 Configurational Data and Geometry 

9.1.1 Airplane 

The overall appearance and configuration of the tech demo did not vary much from the final 

preliminary design. Small changes were made in the following areas: 

The vertical tail was moved aft an extra 1.0 in. 

The canard was made in two pieces that attached to a permanently mounted rod in 

the fuselage, It was originally desired to have a single piece canard that could be 

removed from the bottom floor of the fuselage. 

The wing was mounted at 0' angle of attack with respect to the fuselage reference 

line instead of the 4.35' planned on in the design. This was done as a suggestion 

from an experienced model aircraft pilot in d e r  to trim the wing better during the 

take-off. 

The main landing gear were moved aft 3.0 in to avoid obstruction of the deflection 

of the canard. 

A 10 in propeller was used instead of 9 in. 
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FIGURE 9.1.1 Internal Configuration of the Technology Demonstrator 
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The final pivot bar joint had to be moved 1.5 in closer to the cg to decrease the 

moment requjred for take-off rotation. 

Figure 9.1.1 shows the final configuration of the essential components of the technology 

demonstrator. 

9.1.2 Launch Cart 

The launch cart underwent many significant changes during its development and testing. 

Originally, it was planned to make it a “turn-it-on-and-let-it-go” type system, but it turned out 

being fully controllable, thanks to available equipment and the help of both an electrical and a 

mechanical technician. The cart was powered by a separate Astro 15 motor which turned the 

rear axle by means of cogged gears and a notched belt. A gear reduction of 2: 1 was used. The 

motor required 16 volts to turn the 3.25 in wheels at the 2500 rpm necessary to reach the 

desired 30-35 ft/s. 

9.2 Weights 

The technology demonstrator had a take-off weight of 2.7 lb. This was 17% heavier than the 

design weight of 2.3 lb. A weight breakdown is given in Table 9.2.1. The most surprising 

fact was that no trouble was encountered in locating the cg as aft as desired. In fact, the 

compartment originally designed to hold the motor batteries and speed controller was not even 

used. Instead, these items had to be placed under the wing to move the cg forward. The cg 

was placed 1.47 inches in front of the neutral point for a static margin of 19% MAC. Because 

no trouble was encountered in keeping the cg aft, it is possible that the fuselage could be 

designed shorter allowing a slightly lighter design. However, the vertical tail might also have 

to be made larger to counter the shorter moment arm. 
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Table 9.2.1 Summary of Weights of the Technology Demonstrator 

target values actual values 

total T.O. weight 2.3 lb 2.7.lb 
wing area 3.24 ftz 3.24 f3 
wing loading 1 1.4 oz/ft2 13.3 oz.f? 

4 foot midsection 
2-6 inch wing tips 
entire wing 

canard: 
Vertical Tail: 
Propulsion Svstem: 

Astro 035 motor 
battery pack 
(5 x 500 mah) 
motor mount 
speed controller 
total weight 

Control Svstem: 
2 servos 
receiver 
batteries 
(4 x 250 mah) 
linkages 

g Gear: 

Fuselas: 
(with vertical tail) 

- 
8 oz 

5.5 oz 
3.9 oz 

- 
3.0 oz 
12.0 oz 

1.2 oz 
0.95 oz 
2.0 oz 

6.07 oz 
2.11 oz 
8.18 oz 

WF= 19% 
3.6 oz 
N.A. 

6.9 oz 
4.3 oz 

1.29 oz 
1.25 oz 
14.24 oz 

WF = 34% 

1.31 oz 
0.95 oz 
2.1 oz 

N.A. 

1.8 oz -1.0 02 

9.0 oz 11.4 oz 
wF=2% 

WF = 55% 

9.3 Manufacturing and Cost Details 

The entire airplane was constructed primarily of balsa, spruce, plywood, and Super Monokote. 

Spruce was used in the wing spars and fuselage longerons to provide the desired stiffness. 

Thin 1/16" plywood sheeting was used for surfaces that would experience impacts and heavy 

loads such as the tail bottom (which would drag on landing) and the firewall to which the 

motor mount was connected. Layering the plywood over balsa provided a light and durable 

material. 
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Other details of interest: 

The Monokote may have contributed up to 2.2 oz of the total wing weight. 

Monokote was applied over the 1/16” thick balsa sheet fuselage walls. 

Although it was aesthetically pleasing, it may have contributed unnecessary 

weight. 

All of the top panels of the fuselage were attached with small screws to allow 

easy access to all interior regions. 

Velcro was used to secure batteries, receiver, speed controller, and even the 

engine cowling. It was quite handy. 

Wing box spars, although made with only two 1/8” x 1/8” spruce beams and 

1/16” thick balsa sheeting, exceeded our expectations for strength and stiffness. 

The launch cart was constructed out of scrap wood and aluminum, an unused Astro 15 

electric motor, and some leftover batteries. Wooden dowels were originally used for the axles, 

and some spare gears and a notched belt were used as a transmission system. Practically 

everything except for the wheels was free, being on-hand supplies from the Aerospace 

Engineering Department. The launch cart could, however, become quite a financial burden if 

the equipment were not already on hand. 

Although the cart was originally designed to just be turned on and let go, guided only 

by a taut string attached to a padded weight at the end of the take-off strip, the performance 

proved to be unacceptable. A “kill switch” made of a fuse pulled out by a string, was added to 

eliminate the destructive impacts (the cart kept breaking). The cart also did not steer well. The 

guide string merely satched when the cart veered left or right, instead of keeping it straight. 

A decision could have been made to simply use a metal wire instead of string for 

guidance, but the cart also had the problem of large acceleration rates. The cart accelerated at 

up to 25 fVs2 (0.8g’s) immediately after release. It was feared that this might throw the 

Dawdler and cause serious damage to its lightweight structure. To eliminate both the steering 
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Extensive testing was done on the launch cart before the RPV was ever placed on it. 

Evaluations had to be made of the steering, speed, and acceleration. 

First Tests 

Cart steercd poorly even with guide smng 

15 yd timings were made to estimate speed at several voltage settings. 

Front axle support broke on 3rd impact with cushioned weight - kill switch 

was added. 

Second Tests 

Directional tests performed poorly again after changes made to front axle 

direction. 

Cart was found capable of reaching speeds of 32 fds. 

Third Tests 

Wood drive axle snapped under torque loading (replaced with steel axle). 

Discovered directional problems were related to the directional grain of the 

artificial turf, not the steering system. 

Large acceleration rate considered unacceptable. Decision made to employ fully 

controllable cart. 

9.5.2 Aircraft 

Taxi test 

As designed, the Dawdler did not have enough stand-alone power to reach take- 

off speed Proper tests were delayed while cart changes were being made. 

Take-off test 

Plane remained quite stable on the launch cart pivot bar, but canard could not 

provide enough lift to rotate the d t  for lift-off. 

Pivot bar height was adjusted, but eventually the pivot position had to be moved 

closer to the cg. 
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Canard control neutral position was adjusted, and the wing was remounted at 00 

incidence by suggestion. 

Flight test 

1st run 

Pilot had difficulty keeping plane on cart due to not enough negative angle 

of attack of the canard and wing. The RPV left the cart early, did not have 

enough power to climb, and stalled, breaking the propeller upon impact 

with the ground. The fully moveable canard appeared to be quite sensitive 

to pilot input so the amount of control throw was reduced. 

2nd run 

Pivot bar was raised 1.0 inch to decrease the angle of attack during ground 

roll. The plane rotated well and lifted off but did not gain enough altitude. 

The inside wing stalled during the first turn and the plane landed roughly. 

3rd run 

Pilot kept plane on cart until it reached a velocity of 31 ft/s. The plane 

zoomed up to an altitude of about 15 feet. After several quick oscillations, 

the pilot recovered and trimmed the plane quite successfully. The plane 

completed one very smooth and slow “figure 8” lap before running out of 

battery energy and landed smoothly. 

The flight speed was estimated from stop watch timings at 21 - 25 ft/s. The technology 

demonstrator appeared to have good handling qualities, but almost no rate of climb capability. 

This could have been due to either a slightly lower battery voltage caused by the drain of the 

first two attempts or the fact that the technology demonstrator was 6 oz over the design take-off 

weight. The range and endurance were significantly less than predicted, approximately 290 

yds and 40 seconds respectively, but overall the aircraft performed almost exactly as desired. 
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9.6 Recommendations 

1) The fully maneuverable canard of relatively large size (40% of the wing area) 

appears to be quite sensitive to pilot input. Control deflections should be kept 

small, or alternatively elevators (moveable flaps) could be used. However, a 

fully moveable control surface can be quite forgiving with uncertainties in 

setting the incidence angles. We completely readjusted our wing incidence 

angle but only had to adjust the servomotor angle of the canard to retrim the 

aircraft. 

The propulsion system appeared to have just enough power to cruise at a speed 

of 21 - 25 ft/s and had almost no rate of climb capability. This is most likely 

because the technology demonstrator was 6 ounces (17%) heavier than the 

target value of 2.3 Ibs. However, the power output of the motor might still 

have been less than predicted. Very conservative estimates should be made for 

the propeller efficiency and motor power during initial design stages. It is 

recommended that the Dawdler be fitted with a slightly larger engine (e.g. an 

Astro 05 motor). 

The powered cart proved to be a very feasible and practical tool in assisting the 

aircraft’s take-off (once the bugs were worked out). The cart accelerated much 

faster than most of the other unassisted RPV designs, saved valuable on-board 

battery energy, and actually appeared to p v i d e  the Dawdler with better lateral 

2) 

3) 

stability during ground roll than other with designs with conventional fuselage- 

mounted landing gear. 

It is recommended that this type of take-off cart be used only if it is fully 

controllable with respect to its velocity and steering. Too many problems arise 

with a “turn-it-on-and-let-it-go” type system. Having a separate person 

controlling the cart also appeared to be a good idea; it relieved the pilot of extra 

duties so that he could focus more closely on the performance of the aircraft. 
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The success of the mission with this type of launch, however, depends heavily 

on the pilot being able to trim the aircraft in the moments after lifting off the 

pivot bar. 

Also note that the cost of the this type of system can be prohibitive 

unless the control equipment is already available. 
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X 
Extension of Mission to High Altitude Long Duration 

Station Keeping Mission 

A great deal of interest has been shown in developing a remotely piloted vehicle that can keep a 

relatively constant station at a very high altitude. These types of missions are often called high 

altitude aircraft platforms, or simply HAAP’s. The ultimate goal would be to develop a system 

that could keep an HAAP at a high altitude station indefinitely, without ever having to refuel it. 

Such a design could be used for such applications as wide ranging as forest fire detection, 

marine mapping and observation, communications broadcasting, or atmospheric or 

astrophysics (radiation) monitoring. 

This type of long duration mission would require a special propulsion system. A direct 

application of the Dawdler design would require 6 hours to climb to 70,000 ft and an enormous 

battery capacity of 80,000-100,000 mah! This would mean batteries that would weigh over 45 

lb, and that is just to climb to the platform. A great deal more battery capacity would be 

required to maintain this platform for a reasonable amount of time. A study by E.B. Graves 

has indicated three spacial types of propulsion systems receiving the most attention.[8] These 

are solar-voltaic cells, ground based microwave beams, and nuclear propulsion systems. It 

was determined that refueling or rotation methods would be uneconomical. 

The ground based microwave systems were found to be the most feasible of the three. 

This type of system would rectify a microwave beam sent from the ground and convert the 

energy into electricity to drive a propeller. Solar power systems were found to require large 
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surface areas to produce useful quantities of electricity and would have to have heavy batteries 

to store electricity for nighttime hours. A design was proposed that would use solar energy to 

climb during the day and glide at night, but the altitude loss at night would be excessive. 

Finally it was determined that society would object to nuclear powered HAAP’s. 

In general it was found that airplane type designs were not as feasible as blimp type 

designs. The main reason for this is that airplanes require dynamic lift to stay aloft. At high 

altitudes, the density of air is greatly reduced, meaning the aircraft has to have much larger 

lifting areas or fly at higher velocities. It is generally agreed upon that a HAAP would have to 

be stationed at an altitude of at least 70,000 ft because at lower altitudes high atmospheric wind 

speeds or jet streams would be a serious design concern. 

Overall, the view is pessimistic in ever being able to design an airplane type HAAP 

such as the Dawdler with current levels of technology. It is estimated that a solar powered 

HAAP would require lift coefficients of up to 1.5 at Re between 0.1 and 0.3 million due to the 

heavy weight of the lengthy wings and storage batteries. Relatively few airfoils have been 

designed that can provide this high of CL at those low values of Reynolds numbers. Further, it 

appears that HAAP’s would be more expensive and less flexible than aircraft that are currently 

performing high altitude missions. 

Key technological needs necessary to develop a successful airplane type HAAP include 

reducing the weight of rechargeable batteries, developing strong and very light weight 

structural materials, and developing airfoil sections that can high lift coefficients at low 

Reynolds numbers. Further, either an economical method of beaming and rectifying 

microwaves would have to be developed, or considerably lighter solar cells developed for a 

solar powered system. Unless these needs can be met, the future is bleak for airplane type 

HAAP’s implementing solar power. 
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APPENDIX 
A 

STABILITY DERIVATIVE ESTIMATES 



1 
2 1+2h (C1p)r = -0.25C~,J[ -- 
3 l+h 

(Cl$b& sweep from Fig. 21.9 Leland 

(Cl$w-f/c-f - -0.344 /rad high 
0.0 /rad mid 
+0.0458/rad low 

(l+-)% ao = 0.724 + 3.06SvJSw + 0 . 4 ~  z, + 0.009ARWi,,, 
ap q 1 + cosh 

A.2 Directional 

n=0.84 Re=1@ 
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APPENDIX 

ZOOM TAKE-OFF ANALYSIS 



B.l 

Recall Newton’s Second Law: 

Mathematical Basis for Numerical Solution 

nx = m a, = m (dVx/dt) 

my = m a,, = m (dV,ldt) 

This can be approximated by introducing differential elements.. . 
Dx -. m (AVxlAt) 

Dy = m (AVy/At) 

This basically assumes that the forces acting on the body remain constant over the 

differential time element At. In other words, given an initial set of conditions (i.e. position & 

velocity), the external forces (CF, and Dy) can be calculated and thus the conditions at some 

differential time element At later can be determined by solving the above equation for AVx and 

AVy. 

i.e. vx,new = Vx.old + A v x  

vy,new = Vy.old + Avy new velocities! 

Ax = (lD)(Vx,new + Vx,old) At 

A y  = (lD)(Vy,new + Vy,old) At 

so Xmw = Xo1d + 

Ynew = Yold + AY new distances! 

For the particular airplane in climbing flight, the main external forces will be the lift (of 

the wing and canard), the parasite drag of the entire plane, the induced drag (of the wing and 

canard), the weight of the entire plane, and the thrust of the propeller. Based on the specific 

airplane design and the instantaneous velocity, all of these forces can be calculated. Therefore, 

it would be quite easy to construct a simple computer routine which would utilize the above 

equations and effectively “step” through the climb by differential time elements At. 

For example, immediately prior to take-off, the position and velocity of the plane are 

both known. From the design parameters and the velocity, the farces acting on the plane at that 

instant can be computed. Substituting the proper components into equations (1) & (2), the 
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differential change in velocity can be found at a differential time At later. This in turn 

determines the new velocity at time &, + At, and also the new position at time &, + At. The 

entire process is then repeated by using the new position and velocity to calculate the external 

forces. 

B.2 

As introduced in section B.l, the approximate motion of the airplane upon take-off can be 

simulated by a relatively straight-forward numerical integration of Newton's Second Law. In 

order to provide realistic results, however, it is vital to model all the actual forces which will be 

acting on the airplane as accurately as possible. The following is a complete list of the actual 

design parameters used in the computer routine to determine the lift and drag forces acting on 

the airplane, along with the propeller thrust and the plane's net weight. Furthermore, the 

differential time element used in the numerical integration is given. 

Assumptions and Particular Design Values Used 

Differential Time Element: 0.05 seconds 

Gravitational Acceleration: 32.2 ft/s2 

Air Density: 0.00229 s1u@ft3 

Total Net Weight: 2.3 Ibs 

wing 

Planfom Area: 3.24 ft* 

Aspect Ratio: 7.7 16 

Oswald Efficiency Factor: 0.8 5 

Angle of Zero Lift: 

Lift Curve Slope: 

-0.05 15 rad (-2.9507') 

4.007 rad-' (0.0699 deg-1) 

Canard 

Planform Area: 1.388 ft2 

Aspect Ratio: 5.552 

Oswald Efficiency Factor: 0.85 
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Angle of Zero Lift 

Lift-Curve Slope: 

Propeller Thrust: 0.25 Ibs 

Constant Climb Angle-of-Attack 5’ 

-0.05 15 rad (-2.9507O) 

3.755 rad-l (0.0655 deg-1) 

Regarding the data just presented and the numerical integration technique in general, 

several items should be noted. First, the lift-curve slopes have already been corrected to 

account for the finite nature of the wing & canard, and it is this corrected value which is listed 

above and used by the computer routine. 

Secondly, due primarily to the fact that there was not enough time available to 

experimentally measure the exact relationship between propeller thrust and airspeed for our 

particular propulsion package, it has been assumed that the propeller will be providing a 

constant thrust throughout the climb. Obviously, this is not true since a propeller’s thrust is 

indeed a function of the advance ratio (which changes with the plane’s airspeed). However, 

since the thrust provides a beneficial contribution to the climb, the error introduced by 

assuming that the thrust is constant can be minimized by choosing a slightly conservative 

value. For example, at a cruise speed of 25 ft/s the propulsion package should provide about 5 

lbs of thrust, which is two times greater than the value used in the computer routine. 

Furthermore, in order to effectively model the climbing motion of the airplane and 

determine the forces induced on it, it is necessary to make some sort of assumption concerning 

the angle-of-attack. Basal primarily upon ease of calculations rather than actual experience, it 

has been assumed that the airplane will climb in such a manner that the wing & canard will 

always see the same effective attack angle. Because the relative wind will obviously change 

direction as soon as the airplane begins moving upward and will continue to change as the 

plane eventually loses energy (and hence velocity), this assumption would require the pilot to 

continually adjust the airplane’s attitude during the entire ascent. Keeping the airplane at an 

exact angle-of-attack would undoubtedly be quite a difficult task. Nevertheless, it is an 

assumption which must be made in order model the climbing motion, and it seems to be a fairly 



good approximation when averaged over the entire ascent phase. In an effort to minimize the 

error, a rather modest climb angle of 5' was chosen. 

Finally, ground effect has not been included in the calculations. This was done in an 

attempt to balance out any unforeseen negative factors or errors not accounted for by the 

numerical integration method used. 

B.3 Zoom Take-off Computer Analysis Code 

REM UNIVERSITY OF NOTRE DAME 
REM 
REM 
REM AE441: AEROSPACE DESIGN 
REM SPRING 1990 
REM 
REM GROUP E 
REM ZOOM TAKE-OFT PERFORMANCE 
REM 
REM 
REM 
REM vARIAB- 
REM 
REM AOATI'ACK relative angle of attack seen by airfoils (radians) 
REM AOLC: angle of zero lift of canard (radians) 
REM AOLw: angle of zero lift of wing (radians) 
REM ARC: aspect ratio of canard 
REM ARw: aspect ratio of wing 
REM BETA: 'downwash' angle due to vertical velocity (radians) 
REM CDOc: zero-lift drag coefficient of c d  
REM zero-lift drag coefficient of wing 
REM CLC: lift coefficient of can& 
REM CLw: lift coefficient of wing 
REM D: net drag (lbf) 
REM DT differential time element (seconds) 
REM DVX: differential horizontal speed (feet/second) 
REM D W  differential vertical speed (feet/second) 
REM DX: differential horizontal distance (feet) 
REM D Y  differential vertical distance (feet) 
REM Ec: Oswald efficiency factor of canard 
REM Ew: Oswald efficiency factor of wing 
REM G: gravitational acceleration (feet/secondA2) 
REM INCLIN: inclination of airplane relative to horizontal (radians) 
REM L: net lift (lbf) 
REM LCSc: lift-curve slope of canard (radians"- 1) 
REM LCSw: lift-curve slope of wing (radiansA- 1) 
REM RHO air density (slug.Ifeetn3) 
REM Sc: surface area of canard (feetA2) 
REM Sw: surface area of wing (feetA2) 

DEPARTMENT OF AEROSPACE 8z MECHANICAL ENGINEERING 
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REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 

T 
TOTALTIME: v 
VNX: 
VNY: 
vox 
VOY 
w 
X: 
Y 

propeller thrust (lbf) 
net time from point of take-off (seconds) 
net velocity seen by airfoils (feedsecond) 
"new" horizontal speed (feedsecond) 
"new" vertical speed (feedsecond) 
"old* horizontal velocity (feedsecond) 
"old vertical velocity (feedsecond) 
net weight (lbf) 
horizontal position relative to take-off point (feet) 
vertical position relative to take-off point (feet) 

PI=4*ATN( 1) 

DT=.05 

lTlTALTIME=O 
v o x 4  
VOY=O x=o 
Y=O 

W=2.3 
G=32.2 
RHO=. 00229 

Sw=3.24 
ARw=7.7 16 
Ew=.85 
AOLw=-.05 15 
LCS w=4.007 

Sc=1.388 
ARc=5.552 
Ec=.85 
AOLc=-.05 15 
LCSC=3.755 

T=.25 
AOATl'ACK=.0873 

REPEAT 
BETA=ATN(VOY/VOX) 
INCLIN=AOATTACK+BETA 
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DVX=G/W* ("PCOS (I")-D* COS (BETA)-L*S IN(BETA))*DT 
DVY=G/W* (T* SIN(INCLIN)-D*S IN( BETA)+L*COS (BETA)-W) *DT 

VNX=VOX+DVX 
VNY=VOY+DVY 

X=X+DX 
Y=Y+DY 
vox=vNx 
VOY=vNY 

CLS 
PRINT "TOSPEED: ";TOSPEED; 
PRINT I' NET TIME: " ;TOTALm,"  SECONDS" 
PRINT'' HORIZONTAL POSITION: ";X," FEET" 
PRINT" VERTICAL POSITION: ";Y;" FEET'' 
PRINT" HORIZONTAL SPEED: ";VNX," FEET/SECOND" 
PRINT" VERTICAL SPEED: ";VNY;" FEET/SECOND" 
PRINT" 
PRINT" 
PRINT" 
PRINT" 
PRINT 
IF V d 5  THEN PRINT "DANGER.. . STALL WARNING" 

INCLINATION OF PLANE: ";INCLIN* 180/PI;" DEGREES" 
ANGLE OF ATTACK ";AOATTACK*18O/P~" DEGREES" 
LIFT FORCE OF WING: ";Lw 
LIFI' FORCE OF CANARD: ";Lc 

GET A$ 

GOTOREPEAT 
IF A$="Q" OR A$="q" THEN STOP 

END 

B.4 Validation of Numerical (Computer-Derived) Results 

As a rough validation of the numerical integration technique performed by the microcomputer 

routine given in section B.3, assume that no forces other than gravity are exerted on the plane 

after liftoff. If this were the case, then the kinetic energy at take-off must equal the potential 

energy gained plus the remaining kinetic energy at altitude. 

i.e. For Weight: 2.41bs 

Take-off Speed: 40 ft/s 
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Speed at Altitude: 25 ft/s (cruise speed) 

K.E.1 + P.E.1 = K.E.2 + P.E.2 

( in)mV12 + 0 = ( in)mVp2 + mgh 

(1/2)Vl2 = (1n)Vz2 + gh 

(ln)(40 ft/s)2 = (1/2)(25 ft/s)2 + (32.2 ft/s2)h 

Therefore, h = 15.1 feet. 

Confmed by the computer-derived results presented in Figure 7.2, this height is quite 

close to that predicted by the numerical integration method (16.5 feet). (NOTE: After take-off 

there are definite forces exerted on the airplane besides gravity. Therefore, the validation 

method outlined above can only provide a general check as to whether a more sophisticated 

method seems to be giving plausible results, which it does.) 
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